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Power law in the human memory

and in the neural network model
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Abstract

We show that the learning pace of the back propagation model is described by

a power law with high precision. Interestingly the same power law was found out in

the human memory by a psychologist in the past. Therefore our result provides a

quantitative evidence that the back propagation model, though it is simple, surely

shares some essential structure with the human brain. In proceeding the discussion

we propose a novel model of the memory system. The model overcomes the notable

di�culty lying in the back propagation network that the learning time is very

sensitive to the initial condition.
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1. Introduction

The neural network model was originally proposed as a model of a brain of

living things (McCulloch and Pitts 1943). However, the studies of it have been

spread over many unexpected topics so far. Through such studies we have gained

deep understanding on many aspects of the neural network model itself.

Here, let us consider what we should do next. In our opinion this is the time

to address the original question again. Namely we ask whether the neural network

model is really a good model of our brain or not. We ask whether the study of the

neural network model casts a light on the secret of the human brain. The ample

knowledge on the neural network model would help us tackle this ultimate question

more seriously at present.

Qualitative studies indicating some a�rmative answers to this question have

been given so far. For example, it was pointed out (Rumelhart et al. 1986) that

what is seen in the neural network model with its partial destruction resembles to

what is seen in the human deep dyslexia. On the other hand no much attention

has been paid to the quantitative aspects of the problem.

Instead of considering qualitative features, we focus our attention on a quanti-

tative feature which is common between the neural network model and the human

brain. Namely, we show in this paper that the memory performances of the both

systems are subject to the same power law. The values of the exponents are also

shown to be nearly equal between the two. By comparing the power laws of the

human brain and the neural network model, we �nd the correspondence between

the time scale of the human brain and the algorithm step of the neural network.

For a large range of the parameter values of the model it is shown that our brain

spends o(1) � o(10) msec for a unit step learning. This reaction time of the neu-

rons is physiologically natural (Feldman 1982,1985)(Lynch,Mountcastle,Talbot and

Yin 1977). In proceeding the discussion we notice an important di�erence between

a single back propagation (BP) network (Rumelhart, Hinton and Williams 1986,

Widrow and Ho� 1960, Amari 1967) and the human brain. That is the stability of

learning. As is well known, the learning time of BP is very sensitive to the choice
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of the initial condition, while the human learning time is not so unstable. We point

out that a composite network of many BP networks �lls up this gap in a natural

way.

In the next section we introduce the power law in the human memory proposed

by M.Foucault and present our reexamination of it. In the section three we show

the same power law in the BP model. A novel memory model will be proposed

therein. The last section is devoted to some discussions. A short account of this

article is given in the refs. (Câteau et al. 1992, Nakajima et al. 1992)

2. Power law in the human memory

From our daily experience we know that when we memorize some items, the

pace of the memory slows down as the number of items to memorize increases.

Even if we can memorize 10 names of people in the time t

1

, we cannot memorize

20 names within the time 2t

1

. We need longer time than 2t

1

. This phenomenon is

understood in psychology to be a result of interference between di�erent items to

memorize. When we memorize a new item in addition to items which have been

already memorized, we have to take care not to mix the new one with the old

ones. This costs time and slows down the memory. The psychologist, M.Foucault

expressed this fact as the following empirical law (Foucault 1913):

t(M) = cM

D

(2:1)

with D = 2, whereM denotes the number of items to memorize, t denotes the time

necessary to memorize them and c is a constant. Because Foucault's experiment is

very old one, we �rst performed a reexamination of this law. We prepare a sheet

of paper on which a sequence of random numbers is written. We ask a subject to

memorize these numbers in order as much as possible. Every thirty seconds, we

ask the subject to temporally stop the learning and we check how many numbers

he/she has memorized.

Our psychological experiment was performed in this way. This provides the

data of the form f(t

1

;M

1

); (t

2

;M

2

); � � �g for each subject. If the power law of
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eq. (2.1) holds, these data points, when plotted on a bilog graph, should exhibit

a linear behavior. The slope of the plots corresponds to the exponent D. We

accomplished this experiment for students in the Tokyo Metropolitan Unversiy,

and plotted the data of them on a bilog graph. Displayed in Figure 1 are typical

plots of such. Besides this we also present in Figure 2 the plots of the data from

persons with abnormally high memory. Such data are found in the old psychological

literature (M.Foucault 1913). Note the di�erence on the capacity of the memory

between ordinary people and talents. In these �gures, the error bars are obtained

by assuming 10% error for each data point.

As you see, the linearity of the bilog plots seems good. To gie more qualitative

justi�cation, we performed a �

2

test of these data by assuming two cases. One case

employs the standard deviation obtained from 10% error assumed for each data

point and the other corresponds to the assumption of 20% error. The signi�cance

level thus obtained is given in Table 1, which is mostly high except a few exceptions.

In this way we would conclude that the linearity is fairly good, i.e. the power law

dependence holds well.

If the power law woks universally among many people, that is rather amaz-

ing. Comparing the normal people with talents with abnormally high memory (see

Figures 1 and 2), we may naturally believe that some essential di�erence must lie

in functioning of their memory systems. Nevertheless, our experimental results

indicate a common quantitative feature of the memory system which is expressed

as the power law. In comparison between Figure 1 (normal people) and Figure 2

(talents), the values of c and D have no considerable di�erence. The great di�er-

ence between the two is only the range of t and M . The talents can memorize

many items spending the long time, while the normal people immediately reach

their limit then the range of t and M are narrow.

Our experiment was extended over various types of students. Many aspects

are di�erent among these students such as age, sex, major of interest, physical or

psychological conditions. As we usually feel, the power of the memory in general

depends crucially on such factors. Furthermore the way to learn the random se-

quence is di�erent for the respective subjects. Someone assigns some meaning to
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the random sequence to concrete his/her memory, while someone assigns merely a

rhythm to it. It is clear that such tactics may improve the amount of the memory.

Our result suggests that although the performance of the memory varies depending

on a variety of individual states of the subjects or on such tactics, it is fairly uni-

versal that they are subject to the same type of power law expressed as equation

(2.1).

Now we comment on the value of the power D observed above. The value of D

varies depending on the subject (see Table 1). However, all but one of them were

found within the range 1 < D < 2. (We do not agree with Foucault on the value

of D.) The inequality 1 < D corresponds to the fact that the learning pace should

slow down. As for the meaning of the upper bound D = 2, we will give a comment

later on.

3. Power law in the neural network model

In this section we address an intriguing question whether the neural network

model obeys the power law as observed in the human brain performance. To discuss

this property we employ BP model with a single hidden layer which is one of the

most popular models of the neural network.

The organization of our network is the encoder type (Rumelhart et al. 1986

). It consists of N

i

input units, N

h

hidden units and N

o

output units with N

o

=

N

in

> N

h

. We prepare pairs of N

o

dimensional vectors (e

a

; t

a

)(a = 1; 2; � � � ;M)

as an aim of the training. The network is trained to display output t

a

when it is

shown e

a

in the input layer.

The learning of the connection weight w

ij

when it is shown a-th pattern is as

usual (Rumelhart, Hinton and Williams 1986 ):

�w

ij

(t+ 1) = ��

@E

a

@w

ij

+ ��w

ij

(t); (3:1)

where E

a

is an error function de�ned as E

a

=

1

2

jx

out

a

� t

a

j

2

. Here, the vector x

out

a

is

anN

o

dimensional output vector when the network is shown the a-th input vector e

a
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and j j denotes the usual norm of N

o

dimensional vector. The total error is de�ned

as E =

P

a=1

E

a

. The sigmoid function is used to �lter the net input on each

hidden and output unit as usual. When this network has learned M input-output

relations, we say that the network has memorizedM items. Thus the learning time

in this case is de�ned as the number of iterations spent in the convergence. This

clari�es what are the correspondents of M and t in this simulation.

Since we should measure the learning time universally for the di�erent sessions

having the di�erent values of M , we adopt a criterion of convergence such that

1

M

E � � with � being a �xed small number.

Carrying out the simulation we immediately face the well known problem of BP

network model. The time for the learning to converge is sharply dependent on the

initial condition of the network weights which are given randomly at the beginning.

Let us consider a distribution of a set of data of the learning time in many

sessions. The standard deviation of the learning times is large especially when the

size of the network is large and/or M is large. Given such wide distribution of

the data of the learning times, which should we call the real learning time of this

network?

In order to overcome this problem let us inquire the precise structure of the wide

distribution in question. Displyed in Figures 3 (a),(b) and (c) are histograms of the

distribution of the learning times forM = 1,M = 3 andM = 5, respectively. These

graphs are made from 3000 learning simulations started with di�erent random

initial conditions. The structure of the network is 32-16-32 with the parameters

� = 0:75, � = 0:8 and � = 0:1.

One apparent feature of this distribution is an existence of a lower cuto�. Any

random initial conditions of the network cannot lead to a shorter learning time

than that minimum. Close to that minimum there is a sharply increasing peak.

The large standard deviation of this distribution resides in the subsequent long tail.

This tail shows no exponential decrease. If we compare these histograms, we �nd

that the height of the peak quickly shrinks asM increases. Because the area under

these curves is constant, the standard deviation grows rapidly. This means the low

reproducibility of the learning time, which is not seen in the human memory.
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In order to �ll up this gap between BP and the human brain, we propose the

following model of the memory system. Suppose that there are many, say n = 1000,

back propagation networks having the identical structure N

i

-N

h

-N

o

. We assume

that these networks are connected to one central neuron and each network sends a

singal to the central neuron when it �nishes its learning, see Figure 4. Let us see

what function this large system has. The large system consists of many subsystems

having the structure N

i

-N

h

-N

o

. Suppose that all these subsystems have started

learning in parallel way, triggered by an external input information. What happens

after the start of learning is readily seen from Figure 3.

Until the minimal learning time is attained, the central neuron receives no signal

from the subnetworks. Just after the minimal time, the central neuron receives a

plenty of signals, and the signals will pile up, corresponding to the sharp peak seen

in the histogram. If the bias of the central neuron is set to an appropriate value,

the central neuron sparks by this piling up. We de�ne the learning time of this

composite model as the time when the central neuron sparks.

Let us give a more speci�c de�nition. One possibility is to de�ne the learning

time to be the time of the peak of the histogram in Figure 3. Or we can also

de�ne it to be the time at which 20% of the total subnetworks �nish their learning.

Both de�nitions speci�es the learning time as the time when a su�cient number of

subnetworks have completed their learning.

We have no reason to prefer the latter nor have we any reason to prefer the

criterion 20% instead of 30% etc. in the latter de�nition. As we will see later,

however, any of these de�nitions leads to essentially the same bilog plot of t versus

M . Thus we adopt the latter de�nition with the criterion 20% in this paper.

The advantage of this memory model is obvious. We can always �nish learning

in almost constant time. If we had a single BP network, we are always in the risk of

being trapped in a local minimum or starting with a bad initial condition resulting

in a very long learning time. The large scale parallel distributed processing of the

present model saves the system out of such instability.

Here let us consider the plausibility of our model brie
y from the standpoint

of the real human brain. The connections from the subsystems to the central
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neuron are regarded as synaptic connections. A real neuron in the brain in general

receives the synaptic connections from 10

2

� 10

4

other neurons (Peters,Palay and

Webster 1976). One is not much surprised if there realizes a network of the real

neurons, an essential structure of which is the same as our model. The learning

time of our composite model is de�ned to be the time when an ample number

of subnetworks have completed their course. One important point to note is that

these subnetworks serve backups to the current job. Therefore the learning time we

de�ned is rephrased as the time needed to construct the memory in the brain with

high security. It is again a natural idea that our brain gets a concrete memory by

such mechanism. If it is dangerous that there is only one central neuron, we simply

have to generalize our model as to contain several copies of the central neuron.

Returning to our simulation, now we give our main result of this paper. Figure

5 represents the bilog plot of t versus M of our memory model with the structure

32-5-32 and with the parameters � = 0:8, � = 0:75 and � = 0:01 and the number

of subnetworks n = 100. The plots �t a line with a good precision. The value of

D is also close to that of the human case. We have performed the simulation for

many di�erent values of parameters and structure of the network and found that

the power law universally holds.

As we mentioned above we de�ne the learning time as the time when 20% of

the total subnetworks complete their learning. In Figure 6 we see how the graph

change if we take the ratio 30% instead of 20%. This tells us that the choice of the

ratio is inessential.

In most cases the value of D seems to be consistent with D = 2. What is the

meaning of D = 2? This value is considered to be the worst bound of D in the

following sense.

The slowing down of the pace of the memory is a result of the interferences

among di�erent items to memorize. In order for the network to embed M items

into itself without mixing, M(M � 1)=2 tasks will be needed since the number

of possible interferences among M items is equal to M(M � 1)=2 (which is the

number of bonds among M points). Accordingly we can roughly estimate the time

necessary to complete such job as t /M (M � 1)=2 �M

2

. This implies D = 2. In
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that sense, Table 1 indicates that the human brain learns items more smartly than

such a worst way.

Now we discuss the universality of the value of D in this model. It is veri�ed

by the simulation that the change of � and � only lead to the change of c = t(1)

and the value of D is unchanged. This is in fact analytically understood.

The learning time of the network scales as

t / (1� �)=�

irrespective to the value of M , which we will show in the Appendix. Of course this

does not mean that you can make the learning time shorter as you like by taking �

close to unity, and/or taking � large. The scaling itself breaks in such an extreme

region. Because this scaling applies uniformly in M , the change is only felt by the

constant c and D is unchanged at least in the scaling region.

Next we ask how about the criterion parameter �. The change of the value

of � of course modi�es the learning time. However it is shown by our simulation

that this modi�cation is again uniform in M . The universality of D is not violated

again. To illustrate it we show a plot with stronger criterion � = 0:01 in Figure

5 and a plot with weaker one � = 0:1 in Figure 6. Moreover the learning time is

insensitive to �. In fact while we vary � from 0:005 to 0:5, t changes only by factor

10. From this and the fact that the change of the learning time caused by the

change of � is uniform, we know that we do not need

to discuss what value we should choose for � seriously.

The only remaining factor to be considered would be the structure of the net-

work connection. We have at present no theoretical idea how the power law is

a�ected by the change of the structure N

i

-N

h

-N

o

. Most of the result of our simu-

lation seem to be consistent with D = 2.

Although the global behavior is naturally understood as t / M

2

, the precise

look at the bilog plot shows that there is some vibrating mode around the power

law M

2

. We do not have any idea on this correction to M

2

, but this behavior

seems to be universal and may re
ect some dynamical structure of the model.
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Next we consider the �nite size e�ect of this model. It is known (Rumelhart et

al. 1986 )that the upper limit of the memoryM of the encoder network is estimated

as� 2

N

H

since the binary encoding is used on the hidden layer. Therefore the power

law should break in the vicinity of the upper limit of M . We examined this �nite

size e�ect using a small network 10-3-10 whose limit of M is eight. Figure 7 shows

the corresponding deviation from the power law.

Now we focus our attention on the value of c which is the learning time to

memorize one item. By identifying the power law of the human brain and that of

BP model, we can determine the relation between the time t (second) of the human

experiment and the time t (iteration) of BP. In a large parameter region we �nd that

a unit learning corresponds to o(1) � o(10) msec. It is interesting that this reaction

time is physiologically reasonable (Feldman 1982,1985) (Lynch,Mountcastle,Talbot

and Yin 1977).

4. Discussion

In this paper we have reexamined the power law of the human brain proposed

by Foucault and found it positive. Furthermore we have found out that BP model

also obeys the same power law and that the values of exponent in cases are close to

each other. By identifying the power laws of both we roughly estimated a correspon-

dence between the human time and the time of BP. This leads to a physiologically

reasonable value of the time spent in one step of learning for large ranges of the

parameters. It is of great importance that even very simpli�ed model like BP ex-

hibits quantitatively the same performance with the real human brain. This result

will suggest that the study of the neural network model has an ample possibility

to cast the light on the secret of the human brain.

We pointed out that the stability of the learning time is a gap between the

human brain and the single BP network and proposed the composite model which

�lls up this gap in technically and physiologically natural way.

Considering the value of D, it seems that D's of the human brain are smaller

than that of BP. On this problem we are going to study what kind of modi�cation
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of the model leads to the value of D closer to that of the human brain. This

approach is expected to clarify the di�erence between the human brain and BP.

For example we can show that if we change the stopping condition of the learning

from the criterion E=M < � to E

a

< � for all a, the exponent comes in the range

2 < D < 3. Unfortunately this modi�cation makes the model further from the

human brain.

It is also a charming problem to derive the power law analytically. As to this

problem we are trying on the following line. We de�ne N

o

-dimensional vectors of

error as e

a

= t

a

� x

out

a

for a = 1; 2; � � � ;M . The time development of these are

determined by that of w

ij

, and the time development of w

ij

is controlled by the

learning equation (3.1). Especially when � = 0 we obtain the following di�erential

equation for e,

@

t

e = ��Be

where B is a symmetric matrix of the size MN

o

�MN

o

which depends on w

ij

.

This appearance of � is nothing but the reason why the learning time scales as

/ 1=�. Similarly, in order to study the M dependence of the learning time, we

should examine what kind of scaling can appear when the size of the matrix B

changes as M . This approach is now under investigation.
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APPENDIX

In this Appendix we show that the learning time of the BP network scales as

(1� �)=�.

We consider the error of the network output, which is a function of time t with

the parameters � and �. If we denote this function as e(t; �; �), the learning time

t

0

is determined as e(t

0

; �; �) = �. When the momentum coe�cient � vanishes, the

learning equation (3.1) is written in a continuum limit as

dw

ij

dt

= ��

@E

a

@w

ij

:

This means that the learning curve e(t; �; 0) is a function of �t, namely we get

e(t; �; 0) = e(�t). On the other hand when � 6= 0 we can rewrite (3.1) as

d

2

w

ij

dt

2

= ��

dw

ij

dt

� �

@E

a

@w

ij

;

with � = 1 � �. This is nothing but the Newton's equation of motion with the

potential �E

a

and with a friction coe�cient �. If we divide the equation by �

2

, we

obtain to the same form of the equation with the replacements, �! 1,� ! �=�

2

and

t! �t. Since � = 1 means � = 0, this teaches us that e(t; �; �) = e(�t; �=�

2

; 0).

Combining the above e(t; �; 0) = e(�t) we �nally get the following scaling rela-

tion:

e(t; �; �) = e

�

�

�

t

�

:

which signi�es that the learning time scales as t / �=� = (1 � �)=�. This scaling

property is certainly veri�ed by our simulation.
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NOMENCLATURE

M : The number of items to memorize.

t(M): The time necessary to memorize M items.

D: The exponent of the power law of the memory performance.

c: The constant of the proportionality appearing in the power law.

n: The number of subnetworks of our memory model.

N

i

;N

h

;N

o

: The numbers of input, hidden and output units, respectively.

t

a

: The a-th target signal.

x

out

a

: The a-th output.

w

ij

: The network connection of the back propagation network.

t: The continuous variable parametrizing the learning step of the back propa-

gation network model.

�; �: The momentum coe�cient and learning coe�cient of the learning algorithm

of the back propagation network model.

E

a

; E: The error at the output layer when the network is shown a-th input, the total

error.

�: The criterion of the error to stop the learning.

�: is equal to 1� �.

e

a

: The a-th error of the model (= t

a

� x

out

a

).

B: The symmetric matrix driving the time development of the error of the back

propagation network with the vanishing momentum coe�cient.
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Table Legends

Table 1. These two tables (a) and (b) represent the result of the psychological exper-

iment. The �rst column shows the names of the subjects, the second column

shows how many times the subject is checked his/her memory. The third and

fourth columns show the constants c and D appearing in the power law (eq.

(2.1) in the text). The last two columns show the signi�cance levels of the

linearity of the plots under the assumption that the standard deviation of the

single plot point is 10% and 20% of its value, respectively.
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Figure Legends

Figure 1. The bilog plot of the time versus the number of memory. Data from ordinary

people.

Figure 2. The bilog plot of the time versus the number of memory. Data from a talent.

Figure 3. The histogram of the learning times made by 3000 learning sessions. The

structure of the network is 32-16-32, the parameters are taken as � = 0:75,

� = 0:8 and � = 0:1. Figures (a), (b) and (c) represent the cases M = 1,

M = 3 and M = 5 respectively.

Figure 4. The picture representing our memory model. Each small circle arranged

downward represents the back propagation network of the encoder type. Each

one sends signal upward to the central neuron when it �nish its learning.

Figure 5. The plots with common logarithm of t versus M of the back propagation

model which is implemented as our memory model. The structure of the

network is 32-5-32, the number of subnetworks is 100, the parameters are

taken as � = 0:8, � = 0:75 and � = 0:01. c and D are de�ned as eq. (2.1) in

the text.

Figure 6. The bilog plots with di�erent criterion value which corresponds to the bias of

the central neuron. In this case � = 0:1 and other network conditions are the

same as in Figure 5. (a) and (b) represent the 20% and 30% case respectively.

Figure 7. The bilog plot which represents the deviation from the power law. The struc-

ture of the network is 10-3-10 and the number of subnetworks is 100. The

parameters are the following: � = 0:75, � = 0:8 and � = 0:1. We can see the

deviation from the line at M = 9.
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Table 1.

(a) People with abnormally high memory

name No. of data c D S. L. (%) S. L. (%)

(10% error) (20% error)

1. Dia Mandi 8 0.68 1.8 0.2 53

2. Ishihara 8 0.97 1.2 8.8 85

(b) People with ordinary memory

name No. of data c D S. L. (%) S. L. (%)

(10% error) (20% error)

1. T. S. 5 0.70 1.9 91 99

2. S. K. 4 0.92 1.5 95 99

3. I. K. 5 0.96 1.3 83 97

4. A. N. 5 0.75 1.6 39 86

5. T. K 5 0.44 1.9 35 84

6. M. M. 5 1.0 1.7 65 94

7. K. I. 4 2.3 1.2 56 87

8. T. N. 5 1.1 1.5 1.4 45

9. K. K. 4 5.0 1.1 6.4 51

10. Y. K. 5 1.3 1.3 54 91

11. S. H. 4 0.16 3.9 86 98

12. S. S. 4 1.3 1.5 11 69

13. K. Y. 4 0.73 1.5 86 96

14. H. N. 4 0.60 1.9 90 98

average 1.23 1.70 57.1 85.3


